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ABSTRACT

This paper proposes a combined mechanism for coordinating agents
in timed normative multi-agent systems. Timing constraints in a
multi-agent system make it possible to force action execution to
happen before certain time invariants are violated. In such multi-
agent systems we achieve coordination at two orthogonal levels
with respect to states and actions. On the one hand, the behaviour of
individual agents is regulated by means of social and organisational
inspired concepts like norms and sanctions. On the other hand, the
behaviour of sets of agents is restricted according to action-based
coordination mechanisms called choreographies. In both cases, the
resulting behaviour is constrained by time.
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1. INTRODUCTION

One of the challenges in the design and development of multi-
agent systems is to coordinate and control the behaviour of the
constituting agents. There are different approaches, from low level
ones (e.g., channel-based coordination) to high level ones (e.g.,
normative or action-based artifacts), each with its own purpose and
expressive power.

For example, the normative language proposed in [10] was de-
signed to facilitate the implementation of norm-based organisation
artifacts. Such artifacts refer to norms as a way to signal when vi-
olations take place and sanctions as a way to respond (by means
of punishments) in the case of violations. Basically, a normative
artifact observes the actions performed by individual agents, de-
termines their effects in the environment (which is shared by all
individual agents), determines the violations caused by perform-
ing the actions, and possibly, imposes sanctions. Thus a normative
artifact can be used to enforce the system to be in a specific, i.e.,
non-violating, state.
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On the other hand, the choreography language proposed in [5]
was designed to allow the representation of global synchronisation
and ordering conditions restricting the action execution of agents.
Thus choreographies can be used to enforce specifc actions to
be executed. Introducing action-based coordination mechanisms
while respecting the autonomy of the agents is however problem-
atic. Choreographies might constrain agents’ autonomy, however,
this is a very common practise in multi-agent systems when specif ¢
properties need to be guaranteed. The advantage of the infrastruc-
tures proposed in [5] lies in their exogenous feature: the update of
the agent’s mental states is separated from the coordination pattern.
Nobody changes the agent’s beliefs but itself. Besides that choreo-
graphies are oblivious to mental aspects, they control without hav-
ing to know the internal structure of the agent. More precisely, the
degree of freedom of an agent can be seen, depending on the agent
language, in the choice of plans or in the mechanism of handling
failures (the choreography does not constrain the agent on how to
select an appropriate “repair” operation). In these regards, the au-
tonomy of agents is preserved.

Since their expressive power is not the same, in this paper, we
consider a combination of the above approaches. Furthermore, we
extend such approaches by explicitly modelling time. We do this by
adapting the theory of timed automata [1]. There, time is modelled
as clocks denoted by real-valued variables. Initially, all the clock
variables are initialised with zero. They increase synchronously at
the same uniform rate, counting time with respect to a f xed global
time frame. Clocks should be seen as f ctious, invented to express
the timing properties of the system. We equip both agents and cho-
reographies with clocks. In this way it is possible to model clock
constraints which can (1) time restrict action execution, (2) enforce
delays between actions and (3) enable the sanctioning of delays, for
example, postponing to pay a fne. We emphasise this latter issue
as being a fresh approach to introducing timed normative rules.

Both semantics of the normative and the choreography languages
are operational, thus they have a natural encoding as rewrite theo-
ries. One of the advantages of prototyping languages as rewrite
theories is that it makes it quick and easy to perform verif cation
and to experiment with the language def nitions. Prototyping the
normative language as a rewrite theory has been already done us-
ing Maude [9], a rewriting logic software, as it is described in [4].
Furthermore, given instances of prototyped normative multi-agent
systems have been verif ed with the Maude LTL model-checker
[13]. The timed extension of both languages in a rewrite-based
framework like Maude is practically feasible thanks to Real-Time
Maude [20]. This is also the case for verifying choreographed
timed normative multi-agent systems using the same technique of
model-checking, however for timed systems.

We stress the importance of prototyping languages before im-



plementing them on a standard platform like Java, for example. It
can be the case that during the process of prototyping new ques-
tions about design choices need to be taken, sometimes putting into
light the lack of precision or weaknesses in def nitions. If we take
the case of normative artifacts, usually, their implementation boils
down to fxing a scheduling policy for the application of normative
rules. For example, one can think of an artifact which after each
action execution considers all applicable normative rules such that
all possible violations are signalled and resolved by means of sanc-
tions. Or it can be that only the violations are recorded and at a
later time corresponding sanctions are applied. In [4], the choice
goes for the frst option. Furthermore, the implementation of the
normative artifact is hard-wired in the semantics of the normative
language. There is One transition rule where both the execution
of an action and the application of normative rules are considered.
Such design decisions can give rise to further questions. There is
a close dependence between the instrumentation of the normative
rules and the semantics of the language. Thus, changes in the nor-
mative artifact must directly ref ect in the semantics. Is there a more
generic approach which would allow the implementation of differ-
ent normative artifacts by using the same normative language?

In this paper we focus on such a generic approach. We propose
the use of a meta-level language where we can def ne strategies as
an alternative way to implement different normative artifacts with-
out changing the semantics of the normative language. Thus, at
the object-level, the normative multi-agent system is executed (its
states change) with respect to the rewrite rules which give the ex-
ecutable semantics of the normative language. However, how the
system changes is described at a meta-level, by strategically instru-
menting the rules. By using strategies there is a clear separation be-
tween executions (at object-level) and control (at meta-level). This
gives a great degree of f exibility which becomes important when
the interest is in verif cation. In order to analyse or experiment
with another type of normative artifact (thus a different agent soci-
ety) one only needs to change the syntax of the strategy instead of
changing the semantics of the normative language.

Our contribution is three fold. First, we introduce a timed agent-
based framework. In this framework, we provide two distinct co-
ordination mechanisms which, on the one hand, monitor and en-
force certain normative states and, on the other hand, enforce cer-
tain actions to be executed. The advantages of our approach can
be seen at both practical and theoretical level. Thanks to rewriting
logic, we can prototype the timed normative and the timed chore-
ography languages in Real-Time Maude. This makes it possible to
(1) execute, by rewriting, and (2) verify, by model-checking chore-
ographed timed normative multi-agent systems. At a theoretical
level we provide the basis for a further analysis of properties of
different classes of normative artifacts.

2. TIMED NORMATIVE ARTIFACTS

In this section we introduce a timed variant of the normative lan-
guage presented in [4]. First, we present the standard time con-
structions which we further use in the paper. As we have already
mentioned in the introduction, our idea of time comes from the
theory of timed automata [1]. A timed system is a fnite transi-
tion system extended with clock variables. Time advances only in
states since transitions are instantaneous. Clocks can be reset at
zero simultaneously with any transition. We usually denote by A
the set of clocks to be reset on transitions. At any instant, the read-
ing of a clock equals the time elapsed since the last time it was
reset. States and transitions have clock constraints, def ned by the
following grammar:
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¢c:::xc§t|t§xc|$c<t|t<wc|¢c/\¢ca

where t € QQ is a constant and x.. is a clock variable. When a clock
constraint is associated with a state, it is called invariant, and it
expresses that time can elapse in the state as long as the invariant
stays true. When a clock constraint is associated with a transition,
it is called guard, and it expresses that the action may be taken only
if the current values of the clocks satisfy the guard.

To record clock values one uses clock interpretations. A clock
interpretation v for a set of clocks A assigns a real value to each
clock. A clock interpretation v is said to satisfy a clock constraint
¢c, V E ¢, if and only if ¢. evaluates to true according to the
values given by v. For § € R, v+ denotes the clock interpretation
which maps every clock z. € A to the value v(z.) + 0. For any
A1 € A, v[A1 := 0] denotes the clock interpretation which assigns
0 to every z. € A1 and agrees with v over the other clocks.

2.1 Syntax

Due to space limit, we will illustrate the syntax of the timed nor-
mative language by means of an example. Before, we brief'y pro-
vide an intuitive description of the key concepts. Please see [4] for
a more rigorous presentation of the untimed normative language.

A timed normative multi-agent system is a collection of timed
agents where the behaviour in time of the individual agents is mon-
itored and normative rules are applied consequently. The choice
of agent language is not relevant. However, for the sake of com-
pleteness, in this paper we only consider timed agent languages.
In this way we can describe in a uniform manner a timed, agent-
based framework. The untimed version can be obtained by simply
dropping time constructions since the time extension we envisage
is modular. Roughly, timed agents are agents equipped with clocks.
These clocks can be seen as stop-watches which can be started and
checked independently of one another, however they use the same
unit to measure the passing of time. At each moment the clocks’
values of any agent can be checked by an external observer. The
observer cannot, however, change the agents’ clocks values since
it is only the agents that manipulate their own clocks. The way
they can do this will be intuitively described later on in this section.
The advantage of agents having their own clocks is that the norma-
tive system does not need to have a clock on its own. In order to
(dis)allow the execution of actions at given instances of time or to
punish delays it is suff cient' to consult the clocks of the agents.

We further make the remark that the agents themselves are not
able to reason about the normative rules of the system since there
is no assumption about the internals of individual agents. The only
thing that agents can do is to perform actions in an external en-
vironment which is part of and controlled by the timed normative
multi-agent system. Actions are of two types: either invisible or
observable. An example of invisible ones are the actions for ma-
nipulating clocks. The ones which are of interest in a normative
language are the observable actions. These are given in terms of
enabling conditions and effects. The effects are recorded in the
brute state of the environment. The enabling conditions are queries
on the brute state and on the valuations of the agents’ clocks.

The normative rules are either counts-as or sanctions. Syntac-
tically they are given in the form of implications, (¢, ¢c) = 1,
where (¢, ¢.) generally denotes a precondition as a pair of a frst
order formula and a clock constraint and v, a postcondition as a list
of literals. Informally, the meaning of counts-as (resp. sanctions) is
to update the normative (resp. brute) state with the elements from
the postcondition if the precondition is satisf ed. Clock constraints

'Please note that by def nition clocks cannot “break” or have “fake
time units”.



are present in the precondition because in a timed framework new
violations and sanctions can arise due to time delays. For exam-
ple not paying a fne in a given amount of time might entail the
application of a new violation. Or a sanction might be cancelled
when the expiration time has passed. The only difference between
counts-as and sanctions is that the preconditions of counts-as query
both brute and normative states while the preconditions of sanc-
tions query only the normative state. This is because new sanctions
ref ected in the brute state of the system can entail the application
of new counts-as rules.
We take as an illustration a timed variant of the train scenario de-
scribed in [4]. Figure 1 represents a timed normative multi-agent
Agents:
psgl clockl passenger progl 1
psg2 clock2 passenger prog2 1
Facts:
Effects:
{not at platform(X)}
enter (X)
{at_platform(X)}
clock (X) < 10, {not ticket(X)}
buy-ticket (X)
{ticket (X)}
{at_platform(X), not in train(X)}
embark (X)
{not at platform(X), in train(X)}
{fined (X, Y), not paid-fine(X)}
pay-fine (X, Y)
{paid-fine (X, Y)}
Counts-As rules:
at_platform(X) /\ not ticket(X) =>
viol ticket (X)
( fined (X, Y) /\ not paid-fine(X),
clock(X) > 100 ) => viol fine(X, Y)
Regimentation rules:
in train(X) /\ not ticket(X) => viol | _
Sanction rules:
viol ticket(X) => fined(X, 25)
viol fine(X, Y) => fined(X, 2*Y)

Figure 1: A Timed NMAS Program

system program consisting of two agents psgl and psg2 with
their clocks clock1l (resp., clock2) and their implementations
in the fles passenger progl (resp., passenger prog2).
The initial brute Facts are empty, thus by absence the fact that
psgl isnot in the train is true. The Ef fect s indicate the changes
in the environment, for instance, psgl performing enter when
not at the platform, results in psgl being at the platform (with or
without a ticket). The enabling conditions can include clock con-
straints, for example, in our scenario, buying a ticket is allowed
only if this is done at most until clock (X)? shows 10 units of
time. The Counts-As rules determine the normative effects
for a given state of the multi-agent system. In our scenario, being
at the platform without having a ticket counts-as a specif ¢ viola-
tion (viol ticket (X)). It is also the case that fnes which are
not paid within 100 units of time entail new violations. These rules
function as an enforcement mechanism [14] which is based on the
idea of responding to a violation such that the system returns to an
acceptable state. However, there are situations where stronger re-
quirements need to be implemented, for example, where it is never
the case that agents enter the train without having a ticket. This is
what is called regimentation and in order to implement it we con-
sider the literal viol | by means of regimentation rules. As we will
see, the operational semantics of the language ensures that viol |
can never hold during any run of the system. Intuitively, regimen-

For our scenario, clock (X) should be seen as a “library func-
tion” returning the valuation of the clock of agent X.
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tation can be thought of as placing gates blocking an agent’s action.
In our scenario, the Sanction rules determines the punishment
for viol ticket (X), which is the sanction fined (X, 25).
Furthermore, not paying a fne in time results in doubling the f ne.

In order to analyse the above scenario, we assume a specif ¢ be-
haviour for the agents psgl and psg2. As we have mentioned,
they are timed agents. Examples of timed agent languages are de-
scribed in [5]. We will not focus on their precise syntax and seman-
tics, as this is out of the scope of our paper, but describe, as a short
recipe, how to cook such languages. Roughly, the design method-
ology to time a language can be reduced to the following steps.
First, each agent is assigned a set of clocks which can be checked by
any external observer. Second, the agent language is extended with
two basic constructions which can be used in the agent program for
delaying and resetting clocks. For example, the delay mechanism
can be provided as a default action, ¢ — I, where ¢ is a query
on the belief base of the agent and [ is an invariant like z. < 1.
This mechanism allows time to pass in a state under the condition
that ¢ is satisf ed and as long as [ is valid. Third, action calls are
surrounded by blocks, (¢, a, A), consisting of clock constraints ¢
and sets A of clock resets. A timed extension of an agent language
following these steps has the important feature that “the ontology
of actions is timeless”. This implies that ref ecting the syntactical
time constructions at the semantic level can be done in a modular
way. First a new transition rule for delay actions is needed for the
passing of time. Second, the rule for action execution is updated
such that for each action call (¢, a, ) two additional operations
are performed: (1) a check if ¢. is satisf ed by the values of clocks
and (2) a reset of the clocks in A.

For our case of study, we assume that psgl can be dishonest,
and its plan, p1 in Figure 2, is to buy a ticket if its clock xc shows
less than 9 units, otherwise it will enter without a ticket. If psgl
manages to embark, it spends at most 200 units in the train. We note
that if psgl does not buy a ticket and the normative system applies
the sanction fined (psgl, 25), then if psgl delays for more
than 100 units of time, a new sanction consisting of the doubling
of the fne is entailed. This would not be the case if psgl delays
for less than 100 units and intends to pay the fne (pay-£fine is
in p’). On the other hand, we assume that psg2 is correct and
its plan, p2, is to always buy a ticket before entering the platform.
Furthermore, it has up to 8 units of time to decide what ticket to buy
and it resets the clock after the action is done. The delay true ->
yc < 10 means that psg2 waits at most 10 units of time before
embarking the train.

pl = ( ((xc < 9), buy-ticket) +
((xc >= 9), enter) );
embark; (true -> (xc < 200)); p’
p2 = ((yc < 8), buy-ticket, yc := 0);
enter; (true -> yc < 10); embark
Figure 2: The plans of psgl and psg2
In Figure 2 “;” (resp. “+”) denotes the usual sequencing (resp.

choice) operator. Furthermore, to simplify notation, the blocks
(¢, a, N), are written as pairs (¢pc, a) (resp. a) whenever the ex-
ecution of a does not reset any clock (resp. and additionally ¢, is
considered as being true).

2.2 Operational Semantics

A timed normative multi-agent system state (A, o, oy, ) records
the conf guration of the constituting timed agents, A = {(A41,v1),
(A2,v2), ..., (An,vn)}, together with the brute (o) and norma-
tive states (0,,). We recall from Section 2 that v denotes clock



interpretations. Thus v; represents the current clock values of A;.
The states of a timed normative multi-agent system change depend-
ing on the “event” arising in the system. Roughly, updates of the
brute state o}, are triggered after the execution of actions and after
the application of sanctions. Updates of the normative state o, are
triggered after the application of counts-as rules. When a regimen-
tation rule (a counts-as with viol | as postcondition) is applicable,
the system enters a deadlock state, denoted by L. These changes
can be modelled by means of the following transition rules which,
in fact, give the semantics of the timed normative language:

(¢, {o}a{})  (Ai,vi) = (A}, V)
0 € Sols(op E @) Vi = ¢e
(A, o, on)— (A, op Y0, 0y)

(act)

((¢,¢c) = violL) € R
Sols(oyUon = ¢) #0 VA = ¢
<A70-b70_n>—>J_

(reg)

(¢, 0c) =) €C
0 € Sols(opy Uon =¢) V" E ¢e
(A, o, on)— (A, op, 0n & 10)

(counts-as)

((¢.0c) =v) €S
0 e Sols(opUon =0) VN E ¢e
(A, o, 0n)— (A, 00 B0, o)

(sanction)

where A" = (A \ {(As,vi)}) U{(A},v{)} and R, C, S are sets of
regimentation, counts-as and sanction rules. By abuse of notation
we refer to a(z) (resp. ¢(x), ¥(T)) as « (resp. ¢, ¥) when Z,
the set of variables, is not relevant. The double arrow = denotes
the transitive closure of % with respect to 7 steps, —, for internal

actions, and & steps, -, for delay actions. Sols(o = ) represents
the set of all matchers of v/ against o. The notation 16 denotes the
usual application of the substitution 6 to the set of literals @. The
symbol W denotes the update operation. Its semantics is as follows:

leyo
-l eyl
a€PON|Y|>1

UH‘Jl:UU{l}a
O'L*_'J"l:a\{l}v
oWl = (0 Wa)W (40 )\ {a}),

which means that for each atom a from 6, if it is a positive literal /
then [ is added to o and if it is a negative literal -/ then [ is removed
from o. We further denote by v the valuation of all of the clocks
of all agents from A, i.e., v = {v; | 1 < i < n}®. We say that
" = ¢, is true whenever the valuations from 1* satisfy the clock
constraint ¢.. For example, let us consider a multi-agent system
with two agents, A; and A with A; having two clocks z., y. and
Ao having one clock z.. Let us further assume that we “freeze”
the system for an instant in a state where the clock interpretation
vy of the frst agent is vi(z.) = 2,v1(y.) = 4 and the clock
interpretation v of the second agent is v2(z.) = 6. We have that,
in the clock interpretation A, ie., v1 U 1, the clock constraint
¢c = (zc < 3) A (2c > b) is satisf ed however this is not the case
for the clock constraint ¢. = (y. < 3).

The meaning of the transition rules is as follows. The transition
(act) takes place whenever an agent A; can perform an action «
with the additional requirements that (1) there is a substitution €
such that the precondition ¢ of a matches the current set of brute
facts o3 and (2) the clock constraint ¢ is satisf ed by the current

3In order to have a well-def ned interpretation »* the set of clock
variables of individual agents must be disjoint
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clock interpretation v; of A;. The rule (act) then evaluates the ef-
fects 1 of o and the conf guration of the timed normative multi-
agent system changes such that it ref ects the update of o, with
10 and the new conf guration of A; with its possibly new clock
interpretation which might have changed while § steps. We re-
call that time passes inside agents by means of the internal built-in
delay actions. The transition (reg) can take place whenever there
is a regimentation rule with a precondition matching the current
set of brute and normative facts and a clock constraint satisf ed by
the current clock interpretation of all clocks existing in the system.
The rule (reg) then blocks the execution of actions whose effects
are regimented. The mechanism for the transitions (counts-as) and
(sanction) is similar. They are both meant to apply correspondingly
counts-as and sanction rules.

3. TIMED CHOREOGRAPHIES

The normative constructions described previously are meant to
provide a monitoring mechanism and furthermore, to enforce the
system to be in a certain state, non-violating or conformant for ex-
ample. They cannot, however, enforce certain actionsto take place.
As we have mentioned in the introduction, it is sometimes impor-
tant to require a particular order on the execution of actions. This
is the case when using a scheduling policy and the result could be
a better performance or an increased eff ciency of the multi-agent
system. This is why, based on the formalism from [5], we provide
a mechanism for implementing action-based coordination artifacts
by means of timed transition systems.

3.1 Syntax

We see timed choreographies as represented by a particular type
of regular expressions. Thus, we def ne them using structural in-
duction. The basic cases can be divided into two groups. One
group is denoted by /5 and is meant to represent the passing of time
by delaying clocks. The other group is denoted by [/, and is meant
to represent timed action synchronisation. Synchronisation is de-
noted by the parallel operator ““||”. The parallel operator applies on
pairs (A, a)* consisting of agents and action names. In order to
have a more expressive language, we also allow action variables
instead of action names, i.e., the pairs can have the form (A4, z4).
Timing the synchronisation is modelled by surrounding the con-
structions [, by clock constraints and resets. We then have that
timed choreographies are any combination of /s and [, obtained
with the usual sequence “;”, choice “+” and Kleene “*” operators.
In BNF notation, timed choreographies are def ned as follows:

re <t
(A, 0) | (A,2a) | (la || 1a)
Is | la| (¢peylayN) | ch;ch | ch+ ch | ch®

ls =
lo =

ch

with x, being an action variable. We use the following naming
convention. Action variables are denoted by small letters with a
as subscript (€, Ya, Za...) in order to distinguish them from clock
variables. They are meant to be placeholders for action names.
Action variables are seen as global static variables, thus once bound
their value cannot be changed. The binding is according to the
actions that an agent is enabled to execute at a given time. Variable
bindings are recorded as substitutions.

Before we present the semantics of timed choreographies, we
take, as an illustration, a few examples with intuitive meaning. Let
us f'rst consider the following timed choreography ch :

“Since is associative and commutative, for simplicity, we use
the notation ||z (A;, o) to denote (Aiy, vy ) || -+ || (Asj, )
where Z = {i1,...,4;} and j > 2. This is also the case for z,.

“||s’



((zc < 6), (psg2, buy-ticket))™; (psg2, xa).

This is a choreography for the agent psg2. Intuitively, it specif es
that psg2 can buy tickets for at most 6 units of time and after it
can execute an arbitrary action xa. Let us now consider the timed
choreography chs:

(psgl, buy-ticket); ((zc>7), (psgl, xa))

which says that the agent psgl buys one ticket and as soon as
zc shows 7 it performs an arbitrary action xa. If we compose
chy and chs by a sequence operator we can add that the action
xa performed by psgl is the same as the last one performed by
psg2. If we also recall that the plan of psg1l is to enter without
tickets if more than 9 units of time have passed, we can further note
that the clock constraint (zc < 6) ensures that such a situation
never happens since psg2 has always time to buy tickets. Thus it
is impossible for psg2 to behave dishonestly.

In order to illustrate the use of the parallel operator let us further
consider the timed choreography chs:

(zc < 10);

((psgl, embark)]| (psg2, embark), (zc:=0))

and analyse it in the context of chy = chi;che;chs. The chore-
ography chy says that after both agents bought their tickets and
performed the same action xa, the whole system delays for at most
10 units while the agents wait for the arrival of the train and after
they both embark synchronously. This synchronised action hap-
pens with a reset of zc. We make one last remark with respect
to chy. The reader might have already noticed that xa can only
be the action enter since it is the only one enabled after the
agents buy tickets. As we will see in what follows, the substitution
[xa/enter] is recorded in all choreography states that precede
the one where the binding takes place.

3.2 Operational Semantics

We give operational semantics to timed choreographies such that
it is easily integrated into the timed normative language. Before
presenting the semantics we show how any timed choreography
can be accepted by a timed automaton®. We do this following the
standard approach from [17]. The timed automaton is built by in-
duction on the structure of the choreography. Due to space limits,
we will not provide a complete analysis of all cases but brief'y de-
scribe the construction. The timed automaton associated with a
basic choreography z. < t consists of only one state to which
we associate the invariant z. < ¢. There are no transitions in this
case. The timed automaton associated with a basic choreography [
(resp. (¢e, la, A)) has two states and one transition labelled with [,
(resp. (¢e, la, A)). Given A" and A2 the timed automata asso-
ciated with the choreographies chi and chs, the timed automaton
Achieh2 s the one obtained by concatenating A°"* and A°"2. As
an illustration of how timed automata look like, Figure 3 describes

the one associated with the timed choreography chy.
(psg2, buy-ticket)
zc<6

(psgl, embark)||
(psg2, embark)

(psgl, buy-ticket) — ze > 7, (psgl, xa)
Figure 3: The Timed Automaton A"/

SFor the present context, it is suff cient to see timed automata as
timed transition systems with accepting states

969

Given a choreoraphy, a timed automaton can always be con-
structed, as it is stated in Proposition 3.1 and the proof is can be
reduced to the basic construction steps described above.

PrROPOSITION 3.1. For any timed choreography ch there exists
a timed automaton A" which accepts ch.

We def ne the semantics of timed choreographies® A" by means
of transition systems where the states are denoted as (cs, v) with
cs being a state of A°" and v the current clock interpretation. The
transition rules are with respect to the transition labels of A", that
is, corresponding to delay (Is) and to agents’ actions (o ):

o (cs,v) > (cs,v+68) if v+ 6 |= I(cs) forany § € R*
lz(As,waq)

o (cs,v) ———— (cs', V') ifcs

¢e, vV =v[A:=0]and V' = I(cs').

The frst rule says that the choreography can pass time as long as
the new valuation does not violate the invariant I(cs) associated
with the state cs. The second rule says that for any label (¢, ||z
(Ai,za;), \)in A" we construct a transition labelled ||z (A, Za;)
from (cs, v) only if ¢. is satisfed by the current clock interpreta-
tion v and if after resetting in v the clocks from A the new interpre-
tation v does not violate the invariant associated with cs’.

3.3 Timed Normative Systems Revisited

Adding timed choreographies to the timed normative language
from Section 2 implies that we need to revise the semantics of the
language. We recall that the states of the timed normative sys-
tems were defned as (A, 0y, 0,). In the context of timed chore-
ographies, this is no longer enough since they should ref ect also
the states of choreographies. We denote their new conf guration
by the notation (A, ocp, 0p, 0, ). The symbol o, denotes triples
(cs, v, 0cp). We use it to record the current clock interpretation of
the choreography and the active substitution of action variables.

Taking into account the two transitions giving the semantics of
timed choreographies, we need to extend the semantics of the timed
normative language such that the new states (A, ocp, op, 0pn) change
with respect to the “directions” given by the choreography. This
means that we need to (1) add a rule for passing time when the
choreography indicates a delay and (2) change the rule (act) such
that only the actions specif ed by the choreography are executed.
We frst consider the rule (delay) for passing time:

(cs,v) 2, (cs, v+ 6) /\((Ai,Vi) 2, (As,vi +9))

(AU +6) | I(es)
(A, (es,v,0c1), 06, 0n)— (A", (cs,v + 6,0ch),0p, 0n)

desllz(Aiszai)A

cs', v =

where A’ is {(Ai,v; +6) | 1 < ¢ < n}. This rule says that the
whole system can delay ¢ units as long as the updated valuations
do not violate the invariant of the current choreography state.
The rule (sync-act) for timed synchronised action execution re-
places the rule (act). The changes are as follows:
AiTay
fes.1) 0 et )

/\((Ai,Vi) % (A;J/z{)) /\(¢c¢a{¢i}ai{¢i})

0 € Sols(oy = \ ¢:1) 0Ly, € Sols(\(ai | zaifen))
A Uv ': /\ be;

WU I(es)

<A? (CS, v, 0Ch)a Ob, 0-77«>_)<A’? (68/7 Vl? 9Ch9£h)7 Op & 1/]/7 Un>

®For convenience, we use A" instead of ch.



where A is {(A;,v;) | i € T} UA" (resp. A’ is {(Al,v]) | i €
I} U A", with A" = {(Aj,v;) | j € {1,...,n} \ I}, ¢ is
{1i0 | i € T} and I(cs) is the invariant associated with the chore-
ography state cs. In the construction Sols( /\(ozi = 2a;0cn)), by

K2

abuse of notation we use action names c; as atoms. A solution in
this case is a substitution, either the identity or one which binds
variables x4, not bound already by 6.5. With respect to the previ-
ous rule (act), this rule says, in addition, that only the agents from
the subset {A; | ¢ € Z} are allowed to execute actions while the
ones from A” remain unchanged. Furthermore, if for an agent A;
the choreography only specif es that it can do an arbitrary action
x4 and if the set E/(A;) of enabled actions of A; is not empty, then
x4 will be bound to an action name from E(A;). This binding is
recorded in the new state o, such that whenever x, appears again
in the choreography it will be substituted by the binding.

4. EXECUTING NORMATIVE SYSTEMS

In [4] it is described how the untimed version of the normative
language presented in Section 2 can be prototyped as a rewrite the-
ory. The process of prototyping the timed language as a real-time
rewrite theory ([20]) is similar, nevertheless longer and slightly
more diff cult to follow due to a more complex notation. This and
also the space limit are the reasons why we decide to take the un-
timed normative language as reference from now on until the end
of the paper. Besides, we appraise as valuable the conciseness and
the elegance of rewriting logic which ease the reading.

A rewrite theory consists of a signature (types and function sym-
bols), equations and rewrite rules. In our case, the signature de-
scribes the states of the normative multi-agent system. The rewrite
rules describe how the states change. There is a natural encoding
of transition rules as conditional rewriterules. The general mathe-
matical format of a conditional rewrite rule is:

l:t—)t/if (/\ul :vi)/\(/\wj : Sj)/\(/\pk —>Qk)
i J k

which says that [ is the label of the rewrite rule t — ¢’ which is used
to “rewrite” the term ¢ to ¢’ when the conditions on the left side
are satisf ed. Such conditions can be either equations like u; = v;,
memberships like w; : s; (thatis, w; is of type s;) or other rewrites
like pr — qx. For example, the corresponding rewrite rule for the
untimed transition (act) from Section 2 is:

act : ({Ai, A}, o0, 0n) — ({A}, A}, update(op, 0), 0y if
A 5 AN a = (6,¢) A0 = match(op, ¢)

where update and match are functions def ned by equations. Due
to space limit, we do not further explain the encoding of the lan-
guage as a rewrite theory. From the same reason neither do we
explain the encoding of the choreography language. We only note
that prototyping the untimed A" as a rewrite theory is a straight-
forward process. However, to make the connection between the
prototypes of choreographies and normative systems, that is, to en-
code the transition (sync-act) from Section 3 is slightly more com-
plicated because the set Z has an arbitrary size’. To understand the
next section, we only need to remember that each transition has a
corresponding rewrite rule labelled with the same name.

4.1 Promoting Strategies

Having the normative language encoded as a rewrite theory we
can execute normative multi-agent systems by rewriting. Since

"Technically, we address this issue by consuming one by one the
indexes from 7 and maintaining a history of remaining indexes
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there might be more rewrite rules applicable at the same time, the
execution process is highly nondeterministic. Depending on the ap-
plication order of the rewrite rules act, reg, counts-as and sanction
we execute, in fact, different types of “agent societies” correspond-
ing to specif ¢ normative artifacts. For example, in a “totalitarian”
agent society, the normative artifact monitors each action execution
and applies all active normative rules. Such an artifact corresponds
to a scheduling policy which specif es that frst a check if no reg
rule is enable should occur, then all counts-as rules are applied un-
til no longer possible, and f nally all sanction rules. The process is
reiterated until it is no longer the case.

In the next section we show how we can use rewriting strategies
to specify different scheduling policies of the normative rules. Thus
we reduce the inherent nondeterminism in the semantics of the nor-
mative language by means of strategies. A strategy language S can
be viewed as a transformation of a rewrite theory R into S(R) such
that the latter represents the execution of R in a controlled way, i.e.,
the application of rewrite rules is controlled by the strategy.

We make a short remark that to implement normative artifacts
at the object-level means to encode directly into the semantics of
the normative language specif ¢ procedures based on closure set
computations. This creates a dependency between the normative
artifact and the normative language. Such a dependency has the
implication that changing to a different normative artifact must be
ref ected in the semantics of the normative language.

Following [12], we promote the design principle that automated
deduction methods (e.g., closure sets) should be specif ed declar-
atively and not procedurally. Depending on the normative multi-
agent system application, specif ¢ algorithms for implementing the
normative artifact should be specifed as strategies to apply the
rewrite rules. This implies that the control of the rewriting is at
the meta-level. The separation between execution (by rewriting) at
the object-level and control (of rewriting) at the meta-level makes
it simpler to reason in a modular way about normative multi-agent
systems. When something goes wrong in the system one can frst
verify the normative artifact for an error. Only if this process is
unsuccessful one needs to focus on debugging one by one the con-
stituting agent programs.

4.2 Normative Artifacts as Strategies

In this section we brief'y describe a strategy language S for im-
plementing normative artifacts. The language has been introduced
in [12]. Given the untimed normative language from Section 2, we
denote the corresponding rewrite theory by R. Given a normative
multi-agent system written as a program in the normative language,
its initial state has a corresponding term which we denote by ¢. This
term can be rewritten by the rewrite rules from R. Given a strategy
expression s in the strategy language S, the application of s to ¢
is denoted by s@t. The semantics of s@¢ is the set of successors
which result by rewriting ¢ in S(R).

The simplest strategies we can defne in the strategy language
S are the constants idle and fail: idle @ ¢t = {¢}, fail @ ¢ = 0.
Another basic strategy consists of applying to a normative multi-
agent system state ¢ a rule identif ed by one of the labels: act, reg,
counts-as or sanction, possibly with instantiating some variables
appearing in the rule. The semantics of [@t, where [ is one of the
above rule labels, is the set of all terms to which ¢ rewrites in one
step using the rule labelled . For example, applying the strategy act
to the untimed initial® normative multi-agent system from Figure 1
has 2 solutions corresponding to each agent executing the action
from the head of their initial plans, i.e., one solution ref ects that

8To simplify, we take untimed p1 as enter; embark (untimed
p2 is left unchanged, buy-ticket; enter; embark).



psgl entered the platform and the other, that psg2 bought a ticket.

The language S allows further strategy def nitions by combin-
ing them under the usual regular expression constructions: con-
catenation (“;”), union (“|”), iteration (“*”, “+”). Thus, given the
strategies E, E’, the strategy (E; E')@t is def ned as E'Q(EQt),
that is, £’ is applied to the result of applying E to t. The strategy

(E | E')Qt defned as (EQt) U (E'@Qt) means that both F and E’
are applied to t. The strategy £ @t is defned as UA>1(Ei@t)

with B = Eand E" = E" 4 E, E* = idle | ET, thus it
recursively re-applies itself.

The if-then-else combinators are denoted by £ ? E’ : E” and
their defnition is (if (FQt) # () then E'Q(EQt) else E”@t f)
with the meaning that if, when evaluated in a given state term, the
strategy F is successful then the strategy E’ is evaluated in the
resulting states, otherwise E’’ is evaluated in the initial state. This
strategy is further used to def ne:

not(E) = E ? fail : idle try(E)=FE ?idle: idle
test(E) = not(F) ? fail : idle E! = E* ; not(E)

which have the following meaning. The strategy not reverses the
result of applying E. The strategy try changes the state term if the
evaluation of F is successful, and if not, returns the initial state.
The strategy test checks the success/failure result of £ but it does
not change the initial state. The strategy E'! “repeats until the end”.

We now describe how to implement different normative multi-
agent systems using strategies. We start with:

vigilant = test(act ; reg) ? fails:

(act ; counts-as ! ; sanction !)!

saying that actions are executed only if they do not enable the appli-
cation of regimentation rules (in which case the strategy fails). Af-
ter executing an action, counts-as rules are applied until no longer
possible. Finally, all corresponding sanctions are applied. This
process is iterated until no action can be executed. In our train
scenario, if we assume that a fne equals having a ticket, then the
result of applying this strategy ref ects that both agents are in the
train with tickets and that previously, psgl has been sanctioned.
If this were not the case, then the system is in a deadlock state be-
cause psgl embarks without a ticket, thus enabling the application
of the regimentation rule. We note that a simple change like substi-
tuting “;” by ““|” in counts-as ! ; sanction ! leads to a less restrictive
normative system. An illustrative scenario is that of a video camera
monitoring in a supermarket, or of a radar measuring the velocity
of the passing vehicles. In such cases, sanctions do not necessarily
follow immediately after recording an infraction.
A more restricted society is implemented by means of:

totalitarian = (test(act; reg) ? fails:

(act ; (counts-as! ; sanction ! )!) )!

saying that the process of applying counts-as rules followed by
sanctions is iterated until it is no longer possible. This characterises
scenarios where the application of a sanction enables the applica-
tion of a new counts-as. We take, for instance, a traff ¢ scenario
where an actor drives through the red light, thus violating the traf-
fc law. Consequently, a f ne is applied. We assume that this is done
automatically by withdrawing a certain amount of money from the
actor’s account. It is then the case that not enough money in the
account results in a new violation. This is under the supposition
that the bank has a regulation specifying that the client must not
go below a certain debt level, otherwise the client is added to the
bank’s black list and has to pay an additional fee. We note that this
latter sanction rule can never be applied when the system runs with
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respect to the strategy vigilant. However, in the case of the train
scenario the result of applying either one of the strategies vigilant
or totalitarian is the same.

A liberal society is implemented using the strategy:

liberal = (test(act;reg) ? fails: act)* ;
(try(counts-as) ? try(sanction) : idle)*

This strategy imposes no restrictions on when normative rules are
applied. One possible result could be that the agent psgl was
sanctioned because of being at the platform without a ticket. An-
other solution in a “liberal” agent society could be also the case that
psgl is at the platform without a ticket and without being f ned.
Such a scenario would never be possible when using either one of
the strategies vigilant or totalitarian.

We conclude this section with a short discussion of how we can
further use strategies at both theoretical and practical level. So far,
we have shown how, thanks to strategies, we can explicitly imple-
ment normative artifacts. Having a classif cation of types of nor-
mative systems we can systematically study the expressive power
for each class separately. By expressive power of a normative ar-
tifact we mean the domain of possible resulting behaviours when
the multi-agent system runs under the coordination of the artifact.
For example, in totalitarian societies certain correctness (in terms
of safety) properties are modelled by def nition. It is not diff cult to
see that this is no longer the case in liberal societies. Yet another
point of interest is to f nd not only the differences but also the con-
nections between classes. For example, we can state the following
proposition:

PROPOSITION 4.1. For any (A, op,0,) there exists A" such
that totalitarian@(A, op, 05 ) = liberal@(A, ocp, op, 0rn) Where
Oen i8S (cs0, 0, " := 0) and csp istheinitial state of A",

which says that there exists a choreography such that totalitarian
societies and liberal ones running under the directions of the chore-
ography have the same power. This result suggests that one could
see choreographies as a way to implement regimentation.

At a more practical level, we mention that the strategy language
S is, in fact, implemented in the Maude system. This made it sim-
ple to experiment the use of strategies on the Maude prototype of
the untimed normative multi-agent system from Figure 1. Thanks
to Real-Time Maude, prototyping the timed extension of the nor-
mative (resp. choreography) language as real-time rewrite theories
should be an easy exercise. However, since the strategy language
S is implemented on top of Full-Maude, further effort is needed in
order to use S on Real-Time Maude modules.

5. CONCLUSIONS

In this paper, we have focused on coordination in timed norma-
tive multi-agent systems. We have frst described how timed agent
systems can be implemented. We then presented how coordination
in timed agent systems can be achieved at two orthogonal levels.
On the one hand, we have shown how the states of a system can
be enforced by means of horms and sanctions. The use of social
and organisational concepts (e.g., norms, roles, groups, responsibil-
ity) and mechanisms for monitoring agents’ actions and sanction-
ing has already been advocated in [11, 10, 7]. Temporal aspects
of normative structures have been addressed in [2, 22]. The main
difference in our approach is the “separation of concerns”: actions
are untimed, time constraints are application-specific. Actions have
a natural def nition as belief base transformers, thus having an un-
timed ontology of actions allows reusability. Furthermore, having
time constraints on top of actions allows expressing synchronisa-
tions and multiple independent delays between actions.



On the other hand, we have shown how action execution can be
enforced by means of timed choreographies. Related work with re-
spect to action-based coordination artifacts appears in [21] in terms
of resource access relation. The concepts of choreography and or-
chestration have already been introduced to web services in [18,
19]. With respect to [6], though we use the same terminology, our
framework is in essence different since we deliberately ignore com-
munication issues. Our choreography model is explicit whereas in
[6] is implicit in the communication protocol. Being external, the
choreography represents, in fact, contexts while in the other ap-
proaches there is a distinction between the modularity and the con-
textuality of the communication operator. Timed choreographies
are inspired from the theory of timed automata. Timed automata
has been applied to testing real-time systems specif cations [15],
to scheduling problems [8], and to web-services [16]. The use of
timed automata in a normative multi-agent setting is new.

Besides timed coordination, we have also approached the is-
sue of implicit nondeterminism in the operational semantics of the
timed normative language. We have presented strategies as a way to
handle nondeterminism at a meta-level. Such strategies we use to
implement different normative artifacts for normative multi-agent
systems. We did not discuss termination issues with respect to
strategies. Because of “malformed” counts-as rules, e.g., recur-
sive, the application of vigilant may not always terminate. It is also
the case that “circularities” can lead to non-terminating totalitarian
strategies. These aspects are subject to future work, however, more
details and some examples can be found in [3].

We recall that currently, when regimentation rules are applicable,
the system reaches a deadlock state. This is not an optimal excep-
tion handling mechanism. If an agent tries to do an action which
leads to the application of reg but it can also do a permitted action
a, it should not be the case that the system enters a deadlock state
but it constrains the agent to execute a. We view such mechanisms
as self repairing and we will formalise them in future work.
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